THE THERMAL CONDUCTIVITY OF GAS MIXTURES AT
LOW TEMPERATURES, II
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This article provides a review of the theoretical and experimental references devoted to the
thermal conductivity of gas mixtures at low temperatures, We discuss the influence of quan-
tum effects on the thermal conductivity of gas mixtures.

In investigating the thermal conductivity of gas mixtures under conditions in which the effect of ther-
mal oscillations is particularly weakened we note unique quantum properties which enable us to ascertain
a number of new effects whose observation would be impossible at higher temperatures,

At low temperatures, in calculating the thermal conductivity of a mixture, we must take these quan-
tum effects into consideration, Deviation from the results of classical theory is a result of:

1) diffraction effects whose contribution tothe thermal conductivity of the mixture is a function of the
de Broglie wavelength A = h/27VukT as a ratio of the molecular diameter;

2) the symmetry effects whose contribution to the thermal conductivity of the mixture is a function of
the de Broglie wavelength as a ratio of the molecular mean free path.

The diffraction effects are not significant in the temperature range 200-300°K, and the effects of sym-
metry are not significant above 2°K,

The state of the ¥-component gas mixture is completely described by the distribution function f(r, v, t)
which is a solution of the Boltzmann equation and which, with consideration of the quantum effects of the
gas mixture, has the form [2]
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Having solved this equation, we can derive the expression for the thermal conductivity of the gas mix-
ture in terms of the collision integrals. Both in the classical and quantum theory, the integrals ot) are
found from the expression

@

l/// 2_/;717&} on =5e_yzy2z+3Q(n)dY. (2)
[

In the classical theory v? = ug%2kT; in the quantum theory Y% = h®n?/872ukT,

In classical theory the basic problem which arises in the calculations of the transfer processes is the

determination of the deflection angle X (b, g) as a function of the collision parameter b and the initial relative
velocity g.

In the guantum theory of transfer processes the basic problem is the determination of the radial-wave
phase-shift function n7(»), with the phase shift serving as the only characteristic of collision included in the
formulas for the transfer coefficients.
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analog of the impact parameter in quantum mechanics).
Fig. 1. Thermal conductivity of the

pH,— OH, mixture (W/m -deg) at vari-
ous temperatures: a)1.85°K; b) 3,7°K;

The quantum effecis are taken into consideration in the col-
lision integrals in the expression for the cross section Q(n .

¢) 7.4°K; d) 11.1°K; e) 14.8°K; f) There are several references devoted to the calculation of

18.5°K; g) 22.2°K; 1) data derived the quantum collision integrals [4-6]. Reference [4] presents

from (6); 2) data derived from (7). the quantum collision integrals for the 12: 6 Lennard—Jones po-
tential

co-uftz)"~(2]]

for the range of variations in the de Bour parameter from 0 to 3.5, In [5] we find the quantum collision in-
tegrals for the Lennard—Jones potential for He! (A* = 2.67), He'— He® (A* = 2,88), and He® (A* = 3.08),

In [6] we find the quantum collision integrals for the Morse potential
¢ (r) = o [exp [—2(Cla) (r—r)] — 2exp [— (Clo) (r —r))]} ,
where ry/0 =1+ In2/C.

A number of papers have been devoted to experimental and theoretical investigations of the thermal
conductivity of gas mixtures at low temperatures.

Reference [7] gives theoretical data on the thermal conductivity of the pH,—oH, mixture at tempera-
tures of 1.85-22.2°K. These data were derived from the formula for the thermal conductivity of a mixture
of monatomic gases:

1
T [62 (Ly/hy) + 251, (Lig/he) + 2Lo/hol [ Ly + 2x55Myp 5 43 L™ (6)
It should be noted that the diffraction effects are identical for the molecules of the components making

up this mixture (A} = A = 1.72), The pH, molecules (spin zero) and the oH, (spin equal to 1) are subject to
Bose— Einstein statistics. Figure 1 shows data on the thermal conductivity of pH,—oH,.
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Tig. 2. Thermal conductivity of an He’~ He? mixture (W/m *deg)
at temperatures of 1,522°K (a) and 3.009°K (b): 1) data derived
from (6); 2} data derived from (7); the points denote experiments,

Fig, 3. Thermal conductivity of Ny—Ar (@) and Oy~ Ar (b) mixtures
(W/m + deg) at a temperature of 90°K: I) experimental values for (a);
IT) experimental values for (b); 1) calculation according to (8); 2)
the same, but with2Aj =2Ajpgne (1 — Of + 5fcp/cpf), 6f = pDepf/Mitrans
where Cpf = 5/2R; 3) calculation according to (7).

In [8] we find the theoretical values for the thermal conductivity of an He®— He® mixture at tempera-
tures below 4.09°K. The thermal conductivity of the mixture was calculated in accordance with (6), For
an He’— He! isotope mixture we have Af = 3,08, A¥ = 2,67, and A% = 2,88, The He® molecules are subject
to Fermi-Dirac statistics (molecular spin of 1/2); the He! molecules are subject to the Bose— Einstein
statistics (molecular spin equal to 0).

In [9] we find experimental data on the isotope equimolar He®— He® mixture for the temperature range
0.531-3.009°K. The experimental data were derived by the method of a plane horizontal layer. The ex-
perimental conditions were such that the de Broglie wavelength was smaller than the molecular mean free
path by a factor of at least 100,

Figure 2 presents a comparison of the theoretical and experimental results in connection with the
thermal conductivity of an He®— He! mixture; the theoretical values were derived from (6) and from the
following formula [1, 10]:

e ™
U= Apxo/ 14 Ayxy/x,
where
Dy, o Y My RGNy
A= 5. ! 2 (‘ ( e ey
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The thermal conductivity of Ny,— Ar and Oy— Ar mixtures at a temperature of 90°K is investigated in

[11]. Figure 3 shows a comparison of the experimental data and the data derived [2] with the Hirschfelder
formula

A= A% b x?ik_xltrans+ 7‘2elk‘_ Mgtrans (8)
14+ Dy x 1+ Dy x
DlZ X1 D21 Xy

and formula (7).

We see that for gas mixtures characterized by weak diffraction effects (No—Ar: Af = 0.226, A}=0.186,
Afy = 0.209; Op~Ar: Af =0.201, Af = 0,186, A = 0.198) at moderately low temperatures we can use
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A10% the classical Hirschfelder formula, with the collision integral cal-
// culated for the classical Boltzmann equation
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//// Reference [12] presents data on the thermal conductivity of
/

an He'~H, mixture at a temperature of 90.2°K. The experimen-

g / / tal data are compared with the theoretical data derived from the
4’ & / Hirschfelder formula, The overstated theoretical values for the
6 %7/ 7 thermal conductivity of the mixture, in comparison with the ex-
7 / perimental data, are a result of the overestimation of the thermal
. 2] j conductivity of the mixture as a oons_equence of translational .de.a-
- grees of freedom, The use of experimental thermal-conductivity
)’/}/ values for fewer components in the theoretical Hirschfelder for-
2%\ ' mula yields better agreement between the experimental and theo-

’ retical results.

l Analysis of experimental data on the thermal conductivity of
the Het— H, mixture at temperatures of 273,76°, 195.56°, 158,76°,
128.76°, and 77.96°K [13] demonstrate that it is highly unlikely
that such a minimum would be observed in the relationship between
the thermal conductivity of this mixture and the concentration.

Oy

925 g q7s %
Fig. 4. Thermal conductivity of
He'~ N, mixture (W/m - deg) ata tem-
perature of 196.66°K and at various

pressleres: 1) 0.1 Mn/m?% 2) 10.1 It should be noted that the experimental data cited in [11, 12]
Mn/m% 3) 20.2 Mn/m?% 4) 30.3 Mn were derived by the heated-filament method, whereas the data in
/m% 1-4) experiment; 1',2',3',4') [13] were derived by a coaxial-cylinder method.

calculation according to (7). ) . .
In {10] we find a discussion of the influence exerted by the

quantum effects on the thermal conductivity of mixtures at low
temperatures,

Figure 4 shows a comparison of experimental and theoretical values for the thermal conductivity of
the He'~ N, mixture at a temperature of 196.66°K and at pressures of 0.1, 10.1, 20.2, and 30.3 Mn/m?. The
experimental data have been taken from [14]; the theoretical data were derived in accordance with (7). We
see that with a rise in pressure there is an increase in the divergence between the experimental and theoret~
ical results,

We know that for dense gases those assumptions which have been adopted for rarefied gases (consider-
ation exclusively of the pairwise molecular collisions, neglecting the molecular diameter) are not satisfied,
For dense gases and their mixtures the following Boltzmann equation [2] is valid:

. n .
I +v; Uiy = E ( \ Y (r + iclk fa(r, v)f;c+dk, v)—Y r~—~1—dk fo(r, v) [ (v —dk, vy) | gbdbdedv;,
ot or - )] V2 i 2 ]
where Y =1+ 0.625b0/?/'+ 0.2869 (bo/%2 +0.115 (b0/§)3 . b= 2/37Tﬁd3, and the collision integrals for
this equation will therefore be different from the collision integrals for Eq. (1) and for the classical Boltz-
mann equation.

It should be noted that the theoretical values for the thermal conductivity of the mixtures, presented
in this paper, were calculated for the 12:6 Lennard~ Jones potential by means of the guantum collision in-
tegrals given in [4].

NOTATION

is the Planck constant;

is the Boltzmann constant;

is the reduced molecular mass;

is the phase shift;

is the orbital quantum number;

is the wave number characterizing the overall relative energy of the colliding molecule pair;

X NI ERT
g
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is the classical point of rotation;

is the intermolecular distance;

is the reduced initial relative velocity;

is the thermal conductivity of the mixture;

is the thermal conductivity of the mixture as a consequence of translational degrees of freedom;

is the thermal conductivity of the i-th component as a consequence of the translational degrees
of freedom;

is the molar concentration of the i-th component;

is the reduced temperature

are the parameters of the 12: 6 Lennard~Jones potential;

is the molecular diameter;

is the molecular velocity;

is the time;

is the unit vector directed from the center of one molecule to the center of another molecule at
the instant of molecular contact on collision;

is the second virial coefficient for a gas of solid spheres with the diameter d;

is the Avogadro number;

is the molar volume;

is the energy.
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